		Independent mode - DS \# 1 (OFF <=)		Combined mode - DS \# 1 (=> ON)	
		OFF <=	=> ON	OFF <=	=> ON
DS \# 2	ASB mode	OFF	ON	OFF	ON
DS \# 3	Rel 1 : Detection mode	Presence Loop A	Pulse Loop A	A $->$ B	B -> A
DS \# 4	Rel 2 : Detection mode	Presence Loop B	Pulse Loop B	Presence (A or B)	Opposite combined**
DS \# 5	Rel 1\&2 : Pulse mode	Entry***	Exit	Entry	Exit
DS \# 6	Memory effect*	OFF	ON	OFF	ON

* Memory Effect Mode: Only functional if ASB is set OfF by DS2
on the product for more details.
*** If both relays are in pulse mode, DS5 setting applies to relay 1. Pulse of relay 2 is the opposite setting

LED SIGNAL

GREEN LED
The green LED indicates that the sensor is powered.
N : correct line voltage
OFF: internal problem or power line voltage is too low
The green LED flashes when a switch is changed without validation by the PB.
The red LED indicates the corresponding output detection state. Each LED is assigned to one output.

When the voltage line is applied, the sensor measures the oscillation frequency of each loop. The result of this measurement is displayed on time by using the corresponding red LED. If a detection occurs during a frequency display procedure, the frequency display is cancelled and the relay status is displayed by the red LED.

FAILURE MODES

1. When a loop fault is detected, the corresponding relay of the loop is activated to prevent an accident as long as the fault is not solved. This error is stored during the line voltage OFF/ON procedure only if the memory effect is functional.
2. If the frequency oscillator of the loop (A or B) drifts out of its limits (+/-10 \%), the corresponding relay remains in a detection state and the red LED flashes at 5 Hz frequency. When the frequency oscillator goes back to correct values, the sensor works normally again.
3. If a switch value is changed without manual validation by the PB, the green LED flashes at 5 Hz to signal an error. This information is stored to avoid an automatic validation after a power reset
4. On power ON, if the inductance of the loop is out of the predefined range ($40 \mu \mathrm{H}$ to $470 \mu \mathrm{H}$) the LED gives an error signal status following to the table hereafter. The loop remains in this state until the problem is solved

Loop Default	LED display
The inductance is $>470 \mu \mathrm{H}$	LED flashes $3 \times / 2 \mathrm{sec}$
The inductance is $<40 \mu \mathrm{H}$	LED flashes $4 \times / 1 \mathrm{sec}$
Loop oscillator failed	LED flashes $1 \times / 2 \mathrm{sec}$

5. If an internal failure of the $\mu \mathrm{P}$ is detected during the normal operation the 2 relays are activated, the green LED is turned off and the 2 red LED status is undertermined. To restart the $\mu \mathrm{P}$, you can launch a manual setup by pressing the PB at least 2.5 sec .
\qquad
BENINCA hereby declares that the 9614268 VE. KM2HN is in conformity with the basic requirements and
the other relevant provisions of the directives 1999/5/EC and 2004/108/EC.
The complete declaration of conformity is available on our website.

Digital inductive loop sensor*

DESCRIPTION

\qquad

TECHNICAL SPECIFICATIONS

Technology	inductive loop	Storage temperature range	$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Tuning	automatic	Operating temperature range	$-30^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Detection mode	presence and motion	2 Output relays (free poten-	2 relays, 0.5 @ 42 VAC on
Presence time	1 min to infinity (permanent presence) in 8 steps	tial change-over contact) LED indicators	resistive load - 1 green LED: power
Pulse time output	100 ms		- 1 red LED: OUTPUT 1
Inductance range	$40 \mu \mathrm{H}$ to $470 \mu \mathrm{H}$		- 1 red LED: OUTPUT 2
Frequency range	20 kHz to 130 kHz	Main connector	standard 11-pin round
Frequency steps	2 for each loop		connector 86CP11
Sensitivity ($\Delta \mathrm{L} / \mathrm{L}$)	0.004% to 0.512% in 8 steps	Loop connector	2 contacts for each loop,
Reaction time	33 ms without memory effect 140 ms with memory effect		plug-in terminal for section cable up to $2.5 \mathrm{~mm}^{2}$
Power supply	12-24 AC/DC + $10 \%-5 \%$	Dimensions	77 mm (H) $\times 40 \mathrm{~mm}$ (W) $\times 75$
Mains frequency	48 to 62 Hz		mm (D)
Power consumption	< 3 W	Weight	< 200 gr
Degree of protection	IP40	Product compliance	R\&TTE 1999/5/EC
			EMC 2004/108/EC

LOOPS INSTALLATION TIPS

1. CABLE SPECIFICATIONS FOR LOOP AND FEEDER

$1.5 \mathrm{~mm}^{2}$ cross section area

- Multi-strand cable
-Insulation material: PVC or Silicone
For the feeder cable, the wire must be twisted at least 15 times by meter
A foil screened cable is recommended for long feeder runs (earth at equipment end only)
- The feeder cable must be firmly fixed to avoid any false detection (max length: 100 m)
- Waterproof cable junction box is required

2. DETERMINATION OF THE NUMBER OF LOOP TURNS

WARNING:
For conformity reasons, in any situation, the antenna factor defined as the loop surface multiplied by the number of turns should no exceed $N A=20$

Surface	Number of loop turns
$<3 \mathrm{~m}^{2}$	4
$3-5 \mathrm{~m}^{2}$	3
$6-10 \mathrm{~m}^{2}$	2

ADJUSTMENTS

\qquad

Configuration \# 1: Independent mode
Configuration \# 2: Combined mode

2. THE PUSH BUTTON

The push button has two functions:

- Short push on the push button (max. 2.5 seconds): confirmation of a setting by rotary or DIP-switch (only 1-6). If a switch value is changed without a manual confirmation by the PB, the green LED flashes, but the sensor continues to work with its prior values.
- Long push on the push button (from 2.5 to 10 seconds): launching of learn mode after changing a loop frequency or after any modification concerning the loop installation. This function launches a similar self tuning as during the power on sequence.

	NO POWER	NO DETECTION	DETECTION
NO (PIN 10 \& 11) NC (PIN 3 \& 5)	-		-
		-	

1. THE CONFIGURATIONS (see table on p.4)

PIN 1	Power supply	PIN 7	Not used
PIN 2	Power supply	PIN 8	Not used
PIN 3	Relay 2 (NC)	PIN 9	Not used
PIN 4	Relay 2 (COM)	PIN 10	Relay 1 (NO)
PIN 5	Relay 1 (NC)	PIN 11	Relay 2 (NO)
PIN 6	Relay 1 (COM)		

RELAY CONFIGURATIONS - PASSIVE MODE
 MODE

- 50 mm depending on cable turns number

Clean and dry slots prior to inserting cable
Rem: Make sure no metalic objects are present in proximity of the loops

WIRING

$$
\begin{array}{ll}
\text { Rem: Avoid large loops or long feeder } & \begin{array}{l}
\text { Rem: Make sure the distance D still allows any } \\
\text { object o be detected on both loops at the } \\
\text { (max } 100 \mathrm{~m}) \text {, the sensitivity will be }
\end{array} \\
\text { affected } \\
\text { same time with the directional }
\end{array}
$$

3. ROTARY SWITCHES

After rotary switch change, confirm the setting with a short push on the push button.

- A rotary switch for adjustment of the sensitivity for the loop A
- A rotary switch for adjustment of the presence time adjustment: from 1 min to infinity

SENSITIVITY		Memory effect OFF	Memory effect ON	PRESENCE TIME ADJUSTMENT		
	0	0.512 \%	0.512 \%		0	1 min
	1	0.256 \%	0.256 \%		1	5 min
	2	0.128 \%	0.128 \%		2	10 min
	3	0.064 \%	0.064 \%		3	1 hour
	4	0.032 \%	0.060 \%		4	2 hours
	5	0.016 \%	0.060 \%		5	5 hours
	6	0.008 \%	0.060 \%		6	20 hours
	7	0.004 \%	0.060 \%		7	infinity

4. DIP SWITCHES

After each dip switch change, confirm the setting with a short push on the push button.

DIP \# 1	Independent or combined mode (see configuration table on p.4)
DIP \# 2	Automatic Sensitivity Boost - ASB (recommended for better trucks detection): during a detection, the sensitivity increases automatically to 8 times the present sensitivity given by the sensitivity rotary switch adjustment. It is limited to the maximum sensitivity ($\Delta \mathrm{f}=0.004 \%$) It goes back to the preset value after detection stops.
DIP \# 3	Relay 1 function: presence, pulse or directional pulse (see configuration table on p.4).
DIP \# 4	Relay 2 function: presence, pulse or directional pulse (see configuration table on p.4).
DIP \# 5	Relays 1 and 2 Pulse type (entry / exit).
DIP \# 6	Memory effect: the sensor keeps in memory the output states recorded just before a power cut. Only functional if ASB is set OFF on DS2.
DIP \# 7 \% 8	Loop A Oscillator frequency These two switches are used to adjust the frequency of the loop oscillator A to avoid any intermodulation with other loop installed in the field.

These two switches are used to adjust the frequency of the loop oscillator A to avoid any

DIP \# 7	DIP \# 8	Loop A oscillator frequency $($ (in $\%)$
OFF	OFF	0%
OFF	ON	-13%
ON	OFF	-23%
ON	ON	-30%

- A rotary switch for adjustment of the sensitivity for the loop B
- A rotary switch for adjustment of the presence time adjustment: from 1 min to infinity

DIP \# 9\&10 Loop B Oscillator frequency

just the frequency of the loop oscillator B to avoid any intermodulation with other loop installed in the field.

DIP \# 9	DIP \# 10	Loop B oscillator frequency (in $\%$ o
OFF	OFF	0%
OFF	ON	-13%
ON	OFF	-23%
ON	ON	-30%

